翻訳と辞書 |
Berger–Kazdan comparison theorem : ウィキペディア英語版 | Berger–Kazdan comparison theorem In mathematics, the Berger–Kazdan comparison theorem is a result in Riemannian geometry that gives a lower bound on the volume of a Riemannian manifold and also gives a necessary and sufficient condition for the manifold to be isometric to the ''m''-dimensional sphere with its usual "round" metric. The theorem is named after the mathematicians Marcel Berger and Jerry Kazdan. ==Statement of the theorem== Let (''M'', ''g'') be a compact ''m''-dimensional Riemannian manifold with injectivity radius inj(''M''). Let ''vol'' denote the volume form on ''M'' and let ''c''''m''(''r'') denote the volume of the standard ''m''-dimensional sphere of radius ''r''. Then : with equality if and only if (''M'', ''g'') is isometric to the ''m''-sphere S''m'' with its usual round metric.
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Berger–Kazdan comparison theorem」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|